Call for Papers: Rocky Mountain Anthropological Conference

The Rocky Mountain Anthropological Conference is meeting in Canmore, Alberta September 21 to 24.

Tree Time’s Kurtis Blaikie-Birkigt is organizing a session:

“Current research on the Eastern Slopes”

P8030005_the gap_tweaked - Copy

Historically, the eastern slopes and foothills of the Canadian Rockies have been treated as a peripheral region, either the fringe of the northwest plains and boreal subarctic, or a wilderness frontier between the plains and the central interior of British Columbia.  Recent academic and consulting work in the eastern slopes is identifying the region as an important area for understanding precontact occupation from the earliest peopling of the Americas to the historic past. This session will bring together recent research on eastern slopes travel and trade, resource use, site distribution and land-use patterns, local cultural adaptations, and intra-regional variation.

If you’re interested in participating in this session, please email [email protected], or submit an abstract to the conference website: http://rmac2017.org/home.html

Advertisements

Archaeology Risk Management Plans?

 

In a previous blog post, I wrote about how remediation and archaeological impact assessment pose very similar problems, from a technical perspective. In both cases, there is something in the ground, and we need to figure out where, how much, and what to do about it. My impression is that remediation is well ahead of archaeology on both the technical and regulatory fronts. This is actually a good thing. It means we can borrow and adapt methods and procedures that have been proven to work.

Alberta Environment and Parks (AEP) recently released a draft Risk Management Plan guide to update their guidance on the requirements for Risk Management Plans for Exposure Control. Exposure Control is an alternative to traditional remediation of contaminated sites when full remediation is not technically feasible. AEP’s preferred approach to contamination is remediation (removal of the contaminants), but they’re willing to entertain leaving contaminants in the ground as long as an adequate risk management plan is in place. Both Exposure Control and full remediation have parallels in archaeology; exposure control is very similar to avoidance and remediation is akin to mitigative excavation. In archaeology, the preference is for avoidance over mitigation, because excavation is destructive and archaeology is a non-renewable resource, so we opt for site avoidance whenever we can. This poses a number of challenges:

  • A commitment to avoidance doesn’t provide the clear regulatory closure that site clearance or a completed mitigation does.
  • Once an archaeological site is in-situ within a crown disposition or development footprint there are no regulatory mechanisms to trigger review if development plans change.
  • Long term, theoretically perpetual, avoidance of an archaeological site requires some mechanism to ensure that commitment is communicated to future operators and owners.
  • Ongoing monitoring of hundreds or thousands of avoidance commitments would require substantial regulatory resources.

Too often, avoidance commitments are made and resources are left in-situ, only to be disturbed by later development through miscommunication or human error. The Historic Resource Management Branch of Alberta Culture and Tourism (ACT) has recognized this problem, and has begun requesting more details when proponents opt for site avoidance, but hasn’t yet developed the regulatory mechanisms to address it. Fortunately, Alberta Environment and Parks has had to deal with a lot of contaminated sites and has developed a very detailed and robust draft Risk Management Plan Guide that addresses a lot of the same risks.

AEP has identified several core components of an adequate Risk Management Plan:

  1. Administrative information, including the identification of the person(s) legally responsible to maintain and monitor the plan until the site meets remediation guidelines.
  2. A detailed background to provide the context of the site; essential to ensure that the Risk Management Plan will survive regulatory and operational personnel changes.
  3. Identification of the contaminants (resources) of concern.
  4. Identification of risks associated with the site under current conditions.
  5. A Conceptual Site Model, which is a detailed visual and written description of the site, incorporating all currently known information. (This is another tool archaeologists could borrow from the remediation world to improve how we communicate about sites.)
  6. A summary of current land-use and zoning, which are factors that can dramatically affect the level of risk to a site.
  7. Complete Delineation. Again, remediation is far ahead of archaeology when it comes to standards and methods for accurate delineation and evaluation of sites. In order to accurately evaluate risks, we need a better understanding of the site than is currently obtained at the archaeological survey (HRIA) stage.

AEP also systematically breaks down the Exposure Control Plans to ensure that they will address all of the challenges we raised above. In addition to the detailed exposure control (avoidance) methods that will be implemented, and the rationale for their selection, the Plan has to include:

  1. Timelines and organizational requirements to ensure continuity.
  2. An evaluation of the remaining risks.
  3. A monitoring plan, which is explicitly the proponent’s responsibility, in perpetuity, and must include a schedule and reporting and record keeping mechanisms.
  4. A contingency plan in the event of failure.

Finally, an adequate Risk Management Plan includes a communication plan to ensure that all stakeholders (such as regulators, land owners, municipalities, and First Nations) are aware of the plan, informed of monitoring results, and notified in the event of a failure.

As archaeological mitigation costs continue to rise, our ability to predict and detect the location of sites improves, and community interest in sites of all types increases, proponents will be opting for avoidance and other alternatives to mitigation more often. AEP’s Risk Management Plan model may seem overly prescriptive to archaeological professionals used to fairly open standards and a lot of regulatory freedom, but the continued occurrence of avoidance failures indicates that the current system isn’t working. Fortunately, we don’t have to reinvent the wheel. Techniques, procedures and regulatory models for the long-term management of risks on the land already exist. AEP will be releasing their final guide for Risk Management Plans in the near future. Archaeology Consultants could easily adapt AEPs template to provide our regulators with the information and tools they need to manage and monitor long-term avoidance and other innovative historic resource management options.

Archaeology in the Fort McMurray Fire

ChristinaRiver
View from a burned aspen stand to the Gregoire River valley.

At the end of June we started work on planned fire salvage harvest blocks for Alberta-Pacific Forest Industries, southeast of Anzac Alberta. This was the southeastern end of this springs massive Fort McMurray forest fire. When fire kills or damages a stand, there’s a limited time-frame within which the wood can still be salvaged for lumber or pulp. Planning for salvage started before the fire was under control. Once it was safe to do layout work we had a narrow window to get in and complete our Historic Resource Impact Assessment of the salvage plan before harvest operations would start.
As the Forest Management Agreement holder for most of northeastern Alberta, Alberta-Pacific Forest Industries has a long-term right to harvest aspen and poplar for their pulp mill north of Athabasca. This long term land tenure comes with a lot of responsibilities. These include a responsibility to salvage as much timber as they can from wildfires, and a responsibility to complete historic resource impact assessments of their operations.
The Historic Resource Management Branch of Alberta Culture understands that fire salvage is not part of a forest company’s normal Annual Operating Plan. It’s often difficult to know the final block boundaries until harvest is complete because the timber has to be damaged by the fire, but not too burned. There is therefore some concession given for late-season or last-minute salvage plans, which can be deferred to post-harvest impact assessment the following season.
In this case, Al-Pac wanted to ensure due diligence by completing their HRIA’s prior to salvage, so we started our fieldwork immediately after the layout crews finished putting up their block boundary ribbon. Fire salvage can be both a challenge and an opportunity for historic resource management. In addition to the logistical challenges of the narrow timeframe and uncertainty, working in a fire stand increases some safety hazards. There is of course the risk of holdover fires or flareups. There’s also an increased risk of blowdown from snags (standing dead trees) with their roots burned out and hangers (fallen trees and limbs hung up on other trees). Foresters call these “widowmakers” for a reason. There is often increased bear activity as they take advantage of the fresh green growth, grubs, and in later summer berry production, made available by the fire.
Forest fires also increase the risk of impact to archaeological sites. Forest harvest operations are normally pretty low impact, as far as archaeology is concerned. Feller-bunchers and skidders have large tracks and wheels to keep their footprints light. Under normal conditions, harvest leaves some tracks and trails, but the thick moss and duff of the boreal forest protect buried archaeological sites from a lot of the potential disturbance. A hot ground fire burns off much of the moss and duff, leaving the shallowly buried artifacts typical of the boreal forest much more vulnerable to exposure and displacement.
This factor is also what makes some fires an opportunity for archaeology. One of the hardest parts of doing archaeology in the boreal forest is the fact that everything is covered by a mat of moss, with almost no surface exposure. The only way to find sites is to dig labour-intensive shovel tests, and these provide very limited windows into the buried past. In a hot fire, the moss has been burned off, and we can see a much larger window. In some cases, scatters of artifacts, in-situ (in place) where they were left thousands of years ago, are sitting on the surface.
That wasn’t the case this week. We found a couple of sites where the fire didn’t burn quite that hot, including a probable Besant point, but we had to dig for them, as usual.
I also found a renewed appreciation for the resiliency of the boreal forest, and how well it’s adapted to a frequent fire regime. It’s only been two months since the fires burned through the area, and most of the burn is covered in a lush green carpet of fresh growth. Plants like fireweed, sasparilla, wild rose, raspberry and bunchberry have sprouted from root systems protected from the fire. Aspen and poplar suckers with huge deep green leaves are already knee to hip high. Insects are present in abundance, birdsong can be heard, deer and moose sign shows they’ve returned, and we saw a black bear sow with two cubs.

AspenInTheBurn
By salvaging the burnt timber, Al-Pac will help to fast-track that cycle of renewal, and will leave other areas they’d planned to harvest to grow for another season or two. By having us complete our historic resource impact assessments before harvest, we’ve identified and protected two potentially significant archaeological sites in an area that’s still pretty poorly understood. These are some good examples of how the forest industry plays an important role in Alberta’s woodlands, helping to manage multiple values on the landscape, and balance their operations with ecological and cultural concerns.