Introduction to CRM Part 3: Archaeological Survey

Using information compiled in the office, the next step of an HRIA is to leave the comforts of home behind and to venture into the field. Although there is a perception of archaeologists working at large excavations, often dressed in khakis and maybe wearing a fedora, archaeological survey is the most common type of field work in the CRM sector. So for now, we will focus on archaeological survey and discuss archaeological mitigation in an upcoming blog.

The purpose of an archaeological survey is to visit the high potential target areas we identified in our background research and GIS review in order to see if there are any historic or archaeological sites. We travel to these high potential locations using various means of transport including trucks, ATVs, Argos, the occasional helicopter for the most remote locations, and a lot of hiking (Figures 1 and 2).

DSCF1848_resized
Figure 1. Teresa and Vince in an Argo travelling to target areas.
DSCF2186_resized
Figure 2. Archaeology happens in all weather as Teresa and Brittany hike in snow to our target areas.

When we arrive at these locations, we use experience and expertise to determine if the landform has potential for archaeological and historic sites. For example, is this spot flat and dry? Would we like to camp or hunt from here? High, dry areas, and spots that have nice views are often tested. In fact sometimes we identify a site in the exact spot where we dropped our gear for lunch, as we naturally tend to stop on the best part of the landform (Figure 3).

DSCF2021_resized
Figure 3. Our gear placed at a positive shovel test, flagged with red flagging tape.

 

The most common method of subsurface sampling that we use is screened shovel tests (Figure 4). This means we dig holes about 40 cm square and 30 to 40 cm deep and screen all of the sediment in portable screens. If there are any tree throws or surface exposures, we also conduct opportunistic examinations of these for artifacts (Figure 5).

DSCF2041_resized
Figure 4. Matt is shovel testing.
P7190907_resized
Figure 5. Picture of a tree throw that allows for opportunistic sampling.

There are several different sampling strategies that we use, these include systematic, semi-systematic, and judgmental testing. Systematic testing is the term we use when we place tests using a set interval, for example digging a test every 10 m along a landform. For judgmental testing we do not use a set interval instead we place shovel tests on the best part of a landform based on our past experience and conceptual models of how people lived on different types of landforms. Finally, semi-systematic testing is a combination of the previous two. For this method we place tests on the best locations of a land-form while trying to maintain a certain overall density of testing.

The shape of the landform helps determine what type of sampling strategy to use to test a target. A long uniform ridge might be better suited for hybrid or systematic testing, while a hillock might be more often tested in a judgmental manner (Figure 6).

DSCF1867_resized
Figure 6. Brittany testing a target using a semi-systematic strategy.

If the tests are negative, then we write our notes and move on to another location to survey. However, this does not mean that we can definitely say there is not a site at the location. Negative results only reduce the chance there’s a site at a location. To be 100% sure, we’d have to do a lot more excavation (Figure 7).

P9140588_resized
Figure 7. Although a nice area near water, we did not identify a site here.

On the other hand when we do identify a site, then we stay at the location to undertake further evaluative testing (Figure 8).

P5270044_resized
Figure 8. Vince is very happy after identifying a site when he found a point in a shovel test.

Atlatl Point

This little quartzite projectile point comes from a small site near Wabasca-Desmarais, Alberta. We found it on a small hill that was next to a lake, along with several chert and quartzite flakes. This point likely was fitted to an atlatl dart, a type of feathered throwing spear that uses a hooked throwing stick to help propel the projectile.

It is difficult to tell how old this particular projectile point is. It has a straight base and broad side-notches, which is similar to the Besant Phase (2500 to 1000 years ago on the northern plains), but it is also similar to some of the early side-notched points from the Middle Precontact (8000 to 5000 years ago). Looking further to the north, this stone point also has some similarities to the kind of projectile points found in the Taltheilei tradition in the Northwest Territories. Unfortunately, we do not have a clear understanding of projectile point typologies in the boreal forest of northern Alberta, as this region is lacking deeply stratified archaeological sites with material that we can radiocarbon date.

Introduction to CRM Part 2: Development Screening and Project Planning

The first step of a historic resources impact assessment (HRIA) happens in the office. Once we have the plan for a development, we need to assess whether the footprint will impact any recorded sites or if it has the potential to impact any unrecorded sites. We use our experience and knowledge of archaeology, GIS data, and databases of recorded sites in order to identify high potential areas that might have any archaeological and historic resources (Figure 1). Although this stage of archaeology does not capture the imagination of the public and isn’t very exciting or glamorous, it is the most important part and the foundation of our work.

01072015160
Figure 1. Corey is targeting areas of high potential using QGIS.

High potential areas vary by region, depending on the geography and the history of the area. Generally areas that people would camp or travel through are considered high potential; these include well-defined landforms and areas near water. We also take into account the environment of the past. For example, shorelines fluctuate, and rivers and streams may change course or dry up. Areas near water generally have higher potential because they were used as a method of transport, offered fishing opportunities, and, of course, they were also a source of fresh water (Figure 2).

DSCF1594_resized
Figure 2. View from an archaeological site looking towards a lake.

Sometimes a development plan will conflict with a previously recorded site. In this case, we can recommend either that the development plan be changed to avoid the site, or that impacts to the site be mitigated by excavation. If there are no recorded sites in the footprint, but there are areas that we think are likely to have sites, we recommend field survey. Using GIS data and the research that we have complied concerning the area around the developmental footprint, we create targets of high potential areas to survey in the field. The next step takes us out of the office and into the field.

Antique Car?

Do you think she’ll start? While surveying harvest blocks in the Marten Hills by Slave Lake, we found an old car parked on the side of an old overgrown road. While not as unique an old plane crash, it does show how much an area can change. What used to be a road is now an overgrown trail through the forest.

Introduction to CRM Part 1: Cultural Resource Management

Cultural Resource Management (CRM) is undertaken in many different countries all over the world and it can go by just as many names, Contract Archaeology, Consulting Archaeology, Compliance Archaeology, and Heritage Resource Management (HRM) to name a few. Whatever CRM is called, the underlying purpose is always the same. These archaeologists engage in the protection, preservation, and professional management of archaeological and historic sites. In Canada, this means that we help minimize any impacts planned developments might have on a province’s archaeological and historic resources. These resources include archaeological sites containing artifacts such as stone tools and animal bones (Figure 1), and historic sites consisting of structures like cabins or artifacts like metal tools (Figure 2).

ggox-5dorsvent-174
Figure 1. A stone knife that was recovered from a pre-contact (prehistoric) site.
DSCF2021_resized
Figure 2. A cabin that we discovered during an archaeological survey.

Using our experience in archaeology and research, along with computer programs like GIS, we review development plans and identify recorded sites and areas that have high potential to have archaeological and historical resources (Figure 3). This most commonly results in an archaeological survey of the high potential areas. Another option is to move a development or minimize the potential impacts by changing the way the development will be done.

01072015154
Figure 3. Corey is identifying high potential areas using GIS.

Next, we go into the field to survey the high potential areas (Figure 4). In forested parts of Alberta we do this by shovel testing. If we identify a site, we dig more evaluative tests to determine the nature and extent of it. This allows us to contribute information for the government and other researchers concerning the size and type of sites in the area. In addition, it allows us to more precisely buffer the site for our clients so development can occur close to the site without impacting it. It also makes it possible for us to better evaluate the significance of the site and to render cost estimates for any mitigation work much more accurately.

teresa_resized
Figure 4. Teresa is taking notes about a site.

 

Once we complete the field survey, we return to the office. This is where we catalogue the artifacts and compile a report for our clients and the government.

Wet Screening

Archaeology is messy work, but sometimes things get really wet and muddy! Elenore and Teresa are practicing here what is called “wet screening.” Wet screening is similar to dry screening as you try to get all the sediment through a mesh screen, but water is used to wash away any particularly thick lumps of sediment. Once all the dirt has been washed through the screen, any rocks or artifacts will be left behind to find. This is a particularly effective way of dealing with heavy clay or bulk soil samples, but requires a lot of water and a place that you don’t mind getting messy!